436 research outputs found

    Hybrid Tractable Classes of Binary Quantified Constraint Satisfaction Problems

    Full text link
    In this paper, we investigate the hybrid tractability of binary Quantified Constraint Satisfaction Problems (QCSPs). First, a basic tractable class of binary QCSPs is identified by using the broken-triangle property. In this class, the variable ordering for the broken-triangle property must be same as that in the prefix of the QCSP. Second, we break this restriction to allow that existentially quantified variables can be shifted within or out of their blocks, and thus identify some novel tractable classes by introducing the broken-angle property. Finally, we identify a more generalized tractable class, i.e., the min-of-max extendable class for QCSPs

    BayesNAS: A Bayesian Approach for Neural Architecture Search

    Get PDF
    One-Shot Neural Architecture Search (NAS) is a promising method to significantly reduce search time without any separate training. It can be treated as a Network Compression problem on the architecture parameters from an over-parameterized network. However, there are two issues associated with most one-shot NAS methods. First, dependencies between a node and its predecessors and successors are often disregarded which result in improper treatment over zero operations. Second, architecture parameters pruning based on their magnitude is questionable. In this paper, we employ the classic Bayesian learning approach to alleviate these two issues by modeling architecture parameters using hierarchical automatic relevance determination (HARD) priors. Unlike other NAS methods, we train the over-parameterized network for only one epoch then update the architecture. Impressively, this enabled us to find the architecture on CIFAR-10 within only 0.2 GPU days using a single GPU. Competitive performance can be also achieved by transferring to ImageNet. As a byproduct, our approach can be applied directly to compress convolutional neural networks by enforcing structural sparsity which achieves extremely sparse networks without accuracy deterioration.Comment: International Conference on Machine Learning 201

    Causal Mediation Analysis with a Three-Dimensional Image Mediator

    Full text link
    Causal mediation analysis is increasingly abundant in biology, psychology, and epidemiology studies, etc. In particular, with the advent of the big data era, the issue of high-dimensional mediators is becoming more prevalent. In neuroscience, with the widespread application of magnetic resonance technology in the field of brain imaging, studies on image being a mediator emerged. In this study, a novel causal mediation analysis method with a three-dimensional image mediator is proposed. We define the average casual effects under the potential outcome framework, explore several sufficient conditions for the valid identification, and develop techniques for estimation and inference. To verify the effectiveness of the proposed method, a series of simulations under various scenarios is performed. Finally, the proposed method is applied to a study on the causal effect of mother′^{\prime}s delivery mode on child′^{\prime}s IQ development. It is found that the white matter in certain regions of the frontal-temporal areas has mediating effects.Comment: 35 pages, 9 figure

    Reinforced Mnemonic Reader for Machine Reading Comprehension

    Full text link
    In this paper, we introduce the Reinforced Mnemonic Reader for machine reading comprehension tasks, which enhances previous attentive readers in two aspects. First, a reattention mechanism is proposed to refine current attentions by directly accessing to past attentions that are temporally memorized in a multi-round alignment architecture, so as to avoid the problems of attention redundancy and attention deficiency. Second, a new optimization approach, called dynamic-critical reinforcement learning, is introduced to extend the standard supervised method. It always encourages to predict a more acceptable answer so as to address the convergence suppression problem occurred in traditional reinforcement learning algorithms. Extensive experiments on the Stanford Question Answering Dataset (SQuAD) show that our model achieves state-of-the-art results. Meanwhile, our model outperforms previous systems by over 6% in terms of both Exact Match and F1 metrics on two adversarial SQuAD datasets.Comment: Published in 27th International Joint Conference on Artificial Intelligence (IJCAI), 201

    Multispectral and Hyperspectral Image Fusion by MS/HS Fusion Net

    Full text link
    Hyperspectral imaging can help better understand the characteristics of different materials, compared with traditional image systems. However, only high-resolution multispectral (HrMS) and low-resolution hyperspectral (LrHS) images can generally be captured at video rate in practice. In this paper, we propose a model-based deep learning approach for merging an HrMS and LrHS images to generate a high-resolution hyperspectral (HrHS) image. In specific, we construct a novel MS/HS fusion model which takes the observation models of low-resolution images and the low-rankness knowledge along the spectral mode of HrHS image into consideration. Then we design an iterative algorithm to solve the model by exploiting the proximal gradient method. And then, by unfolding the designed algorithm, we construct a deep network, called MS/HS Fusion Net, with learning the proximal operators and model parameters by convolutional neural networks. Experimental results on simulated and real data substantiate the superiority of our method both visually and quantitatively as compared with state-of-the-art methods along this line of research.Comment: 10 pages, 7 figure
    • …
    corecore